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Abstract

Increasing dependency of data availability and the
fear of losing the private information during com-
munication motivate the need of privacy protection.
One of the common problems occurs when two par-
ties meed to privately compute the intersection of
their respective sets of data. One or both parties
must obtain the intersection (if one exists), while
neither should learn anything about the other party
set. Till date, one of the efficient approach has been
presented with consideration of Big Data by Dong,
Chen and Wen (CCS 2013). They have introduced
a new data structure named as Garbled Bloom Filter
(GBF), an improved Bloom filter, for the computa-
tion of the Private Set Intersection (PSI). While
the PSI protocol (DCW138 protocol) by Dong, Chen
and Wen is pretty efficient, it does not support for
managing dynamic data. In this paper, we present
data management techniques on the server side of
the DCW138 protocol, which compliment the DCW18
protocol.

1. Introduction

In today’s world, the privacy of data is a very
precious asset. There are many realistic scenarios
where the private data must be shared among mutu-
ally suspicious entities for the communication. Let
us consider a few examples:

1. A government agency wants to confirm that
employees of its industrial contractor have not
any criminal records. Neither the agency nor
the contractor is ready to share their respective
data sets but both would like to know if there
is any intersection between them.

2. National law enforcement bodies want to com-
pare and know their respective databases of
terrorists, however laws from the country pre-
vent them from revealing the data, still they
are allowed to share data on the basis of the
common interest.

3. Real estate companies would like to see cus-
tomers who are dealing with other real estate

companies for their profit, but still they can-
not share all the personal details, so the inter-
section of some mutual information is needed
between them.

4. Tax authorities always seek for the information
if the tax evaders have accounts with any for-
eign bank and look to get account information.
Bank rules forbid the disclosure, so the tax au-
thority cannot obtain information of suspects.

As the technology is growing rapidly everyday, we
are confronting with a huge amount of data in every
task we perform. Hackers and spammers are also
growing to find the way to leak the private infor-
mation. Protecting the privacy of data is an always
serious issue whole over the world because crackers
steal the information and leak it. This has been
compulsory to ensure the privacy of data in many
countries from their law. We can take examples
like HIPPA act in the United States, the European
Union Data protection directive and many others.
Even though various security techniques have been
proposed to enable the privacy preservation but be-
cause of the huge size of data and huge processing
cost, it is being very difficult to get preserve the
data privacy without efficient solutions. In cryp-
tography for the data security, there are different
types of techniques presented, among them the Pri-
vate Set Intersection (PSI) is also a solution. In PSI,
we assume two parties, a client and a server, and
the client wants to compute the intersection of their
private input sets in the manner that at the end the
client learns the intersection and the server knows
nothing. This PSI problem has been researched ex-
tensively because set intersection is a foundational
primitive and it also has many practical applica-
tions. Efficient PSI protocols have been used as a
framework for many privacy oriented applications
like bot-net detection [30], Denial of service attack
identification [1], online games [8], social network-
ing applications [27] and many others.

Amount of processing data size is also increasing
rapidly along with the pace of technology, so find-
ing solutions to handle Big Size of Data processing
needs to be considered. Among many other ways



of handing one of the efficient solution will be dy-
namic management of data. Dynamic management
of data helps to increase, decrease or modify in the
size of data in the processing. We have extended
Dong et. al’s protocol [11] to present the different
data management techniques over the data struc-
ture presented in their paper.

Recently the paper entitled ”Faster Private Set
Intersection based on OT Extension” has been pre-
sented by Pinkas et. al [33], where they have pre-
sented that DCW13 protocol can also be enhanced
along with increase in performance. They have pre-
sented the computation complexity can be reduced
by half if the Oblivious Transfer mechanism used
in the protocol is optimized. Our dynamic data
management techniques can even be applied with
this optimized approach of PSI protocol because
techniques we have presented doesn’t deal with the
workflow of the protocol rather deals on the server
for preparation of GBF.

1.1. Our Contribution

In this paper, we are considering the protocol pre-
sented from Dong et al. [11] where they have used
a new variant of Bloom filter named as Garbled
Bloom Filter. After they presented the protocol, it
is considered to be more efficient than existing any
other PSI protocols, so it motivated us to add fur-
ther improvement to it with adding the data man-
agement methods. We present several data manage-
ment methods that can be implemented on the Gar-
bled Bloom Filter (GBF). We show properties of the
GBF that can be carried out with clear algorithmic
explanation as well as many researchers have con-
sidered different dynamic data management prop-
erties of the standard Bloom filter and the counting
Bloom filter. By using the properties on the GBF,
we illustrate data addition on the GBF, data re-
moval within the GBF and merging two GBF's into
a single GBF.

1.2. Organization

This paper is organized as follows. In Section 2, we
have explained related works. We borrow notations
and definitions from Dong et al. [11] and show them
in Section 3, which we also use in this paper. We
review the DCW13 protocol in Section 4. We pro-
pose our data management methods in Section 5
along with execution algorithms. We conclude the
paper in Section 7.

2. Related Work

The concept of the Private Set Intersection was in-
troduced by Freedman et al. [18] in 2004. Their

protocol is proven secure against semi-honest ad-
versaries in the standard model and can be ex-
tended for malicious adversaries in the Random
Oracle model at an increased cost. After them,
Kissner and Song proposed PSI protocols in mul-
tiparty settings [26]. Hazay and Nissim proposed
protocols which are more efficient even in the pres-
ence of malicious adversaries. They recently present
an improved construction of the oblivious polyno-
mial evaluation based PSI [21]. Dachman-Soled
et al. [15] present an improved PSI construction.
Their construction incorporates a secret sharing of
polynomial inputs. Since Shamir’s secret sharing
[36] implies Reed Solomon codes, they do not need
generic zero-knowledge proofs. Hazey and Lindell
also proposed different approach for PSI which is
based on oblivious pseudorandom function evalu-
ation [20]. Jarecki and Liu improve the previous
solution, proposing a protocol secure in the stan-
dard model against both malicious parties, based on
the decisional ¢-Diffie-Hellman Inversion assump-
tion [23].

Recently, Huang et al. [22] presented a semi-
honest PSI protocol based on garbled circuits.
Their protocol requires O(nlogn) symmetric key
operations and a small number of public key opera-
tions. They have presented that in certain cases this
protocol is more efficient than the previous PSI pro-
tocols. And under low security settings De Cristo-
faro’s protocol [15] is the fastest, while at high se-
curity settings Huang’s protocol is more efficient.
Recently, Dong et al. [11] proposed a PSI proto-
col (DCW13 protocol) which is more efficient than
these above mentioned existing PSI protocols. They
have designed protocol based on a novel two-party
communication approach, where a new variant of
Bloom filter has been used and termed as Garbled
Bloom Filter (GBF) and the approach has been
termed as oblivious Bloom intersection. Due to the
efficiency, the DCW13 protocol can deal with so
called Big Data. Unfortunately, the DCW13 pro-
tocol cannot deal with dynamic data. We can con-
sider that Big Data is growing in size. Thus, it is
necessary to develop an efficient PSI protocol which
can deal with dynamic data. In future, it might be
necessary for the applications to handle dynamic
data not only because of Big Data size but also to
carry out comparison in performance value and to
determine top most execution power of the server
or application.

3. Preliminaries

3.1. Bloom Filters

A Bloom filter [6] is a space efficient compact data
structure that is used to test whether an element is



a member of a set or not. Specifically speaking, a
Bloom filter is an array of m bits that can represent
a set .S of at most n elements. A Bloom filter comes
with a set of k independent uniform hash functions
H = {hg,...,hx—1} that each h; maps elements to
index numbers over the range [0, m — 1] uniformly.
In the Bloom filter, all bits in the array are set to
0 initially. To insert an element x € S into the
filter, the element is hashed using the k£ hash func-
tions to get k index numbers and these bits at all
these indexes in the bit array are set to 1, i.e., set
BFg[hi(x)] =1 for 0 < i < k—1. To check if an
item y is in S, y is hashed by the k£ hash functions,
and all locations y hashes to are checked. If any of
the bits at the locations is 0, y is not in .S, otherwise
y is probably in S.

3.2. Secret Sharing

Secret sharing is a fundamental cryptographic prim-
itive method of distributing secret among the par-
ticipants each of whom is allocated a share of secret.
In secret sharing scheme there is one dealer and n
players. It allows a dealer to split a secret s into n
shares such that the secret s can be recovered effi-
ciently with any subset of ¢ or more shares. With
any subset of less than ¢ shares, the secret is unre-
coverable and the shares give no information about
the secret. Such a system is called a (¢, n)-secret
sharing scheme.

When t = n, an efficient and secret sharing
scheme can be obtained by simple (XOR) opera-
tions. The scheme works by generating n — 1 ran-
dom bit strings r1,...,7,_1 of the same length as
the secret s, and computing r,, =71 ®---Br,_1PBS.
Each r; is a share of the secret. It is easy to see that
s can be recovered by computing 1 ® --- @& r,, and
any subset of less than n shares reveals no informa-
tion about the secret.

3.3. Oblivious Transfer

Oblivious transfer [16, 35] is a mechanism that al-
lows a sender to send part of its input to a receiver
in a manner that protects both parties. In oblivious
transfer mechanism even though the sender sends
part of its input, does not know which part the
receiver receives and the receiver does not know
any information about the remaining part of the
sender’s input. Generally, an oblivious transfer pro-
tocol can be denoted as OT}". This notation means
the sender holds m pairs ¢-bit strings (z;,0,x;,1) for
all j with 0 < j < m — 1, while the receiver holds
an m-bit selection string r = (rg,...,rm—1). At the
end of the protocol execution, the receiver outputs
Tjr; for0<j<m-—1.

3.4. Garbled Bloom Filters

A garbled Bloom filter is a garbled version of the
standard Bloom filter [11]. While analyzing sim-
ply, there is not any difference between a garbled
Bloom filter and a Bloom filter but they have dif-
ference. In garbled Bloom filter, each location has a
A-bit string that is either a share of certain elements
or a random string. It encodes a set of at most n
elements in an array of length m, it also supports
membership query with no false negative and negli-
gible false positive. To add an element, the element
is mapped by k independent uniform hash functions
into k£ index numbers and the corresponding array
locations are set. To query an element, the element
is mapped by the same k hash functions into k in-
dex numbers and the corresponding array locations
are checked. So, garbled Bloom filter seems to be
exactly same with the standard Bloom filter but
the difference between them is garbled Bloom filter
stores share of data or random string in each slot
whereas Bloom filter has only 1 or 0 in every slots.

4. Review of DCW13 Protocol

Dong, Chen and Wen [11] presented a new PSI pro-
tocol that is much more efficient than all the already
existing PSI protocols. Their protocol is designed
based on a novel two-party computation approach,
which makes use of a new variant of Bloom filters
which has been termed garbled Bloom filters, and
they have referred the new approach as oblivious
Bloom intersection. Their PSI protocol has been
explained in the two versions: the basic one and
the enhanced one. In the basic protocol they have
proved the security in the semi-honest model and in
the enhanced protocol the security has been proved
in the malicious model. They have proved that the
basic protocol has linear complexity (with a small
constant factor) and relies mostly on symmetric key
operations.

Not only efficiency there is another big advan-
tage of this protocol, i.e., scalability. The compu-
tational, memory and communication complexities
are all linear in the size of the input sets. They have
presented that operations in the protocol can be
performed in the SPMD (single program, multiple
data) fashion that means little effort can also sep-
arate computation into a number of parallel tasks.
So that their protocol can be executed with par-
allel processing capacity provided by current multi
core CPUs and cloud computing environment. As
multicore CPUs and cloud computing is supported
by the protocol, it is can be implemented for Big
Data oriented applications where data needs to be
processed either in the parallel way or distributed
way. Firstly, we will discuss the basic version of the



protocol.

4.1. Basic Protocol

The basic protocol has been discussed in the semi
honest model and protocol is very simple. The
client computes a Bloom filter which encodes its set
C and the server computes a garbled Bloom filter
which encodes its set S. To add an element x € S
to a Garbled Bloom Filter, first of all, split the el-
ement into k A-bit shares using the XOR-based se-
cret sharing scheme. The element is also mapped
into k index numbers and store single share in each
location h;(z).

In a garbled Bloom filter, each location has a A-
bit string that is either a share of certain elements
or a random string. For easy understanding, a share
in a gabled Bloom filter is equivalent to a bit “1”
in a Bloom filter, and a random string is equivalent
to a bit “0”. Same as the Bloom filters, there is no
false negative when using a GBF because all shares
of an encoded element are guaranteed to be retriev-
able and the XOR-based secret sharing scheme al-
ways produces the original element when all shares
are available. After the data preparation from the
client and the server, they execute oblivious trans-
fer protocol. At the end of the execution of proto-
col, the client obtains a garbled Bloom filter with
the intersection of data and the server learns noth-
ing. Then the client queries the intersection garbled
Bloom filter and obtains the intersection value. To
query an element y, collect all bit strings at h;(y)
and XOR them together. If the result is y then y
is in S, otherwise y is not in S. The correctness is
obvious: if y € S, the XOR operation will recover
y from its k shares which are retrievable from the
garbled Bloom filter by their indexes. If y ¢ S, then
the probability of the XOR result is the same as y
is negligible in .

The execution of the basic protocol has been ex-
plained and termed as oblivious bloom intersection
[11].

Oblivious Bloom Intersection
1. The server’s private input is 5, the client’s pri-
vate input is C. The auxiliary inputs include
the security parameter A, the maximum set size
n, the optimal Bloom filter parameters m, k
and H = {hg,...,hx—1}. The parameter k is
set to be the same as the security parameter A.

2. The client generates an (m,n,k, H)-BF that
encodes its private set C, the server generates
an (m,n, k, H, \)-GBF' that encodes its private
set S. The client uses its Bloom filter as the
selection string and acts as the receiver in an
OT;), protocol. The server acts as the sender in
the OT protocol to send m pair of A-bit strings
(4,0, x;,1) where x;,0 is a uniformly random

string and x;,1is GBFgli]. For 0 <i<m—1,
if BF ¢[i] is 0, then the client receives a random
string, if BF¢[i] is 1 it receives GBFg[i]. The
result is GBF{ng-

3. The client computes the intersection by query-
ing all elements in its set against GBF {qg.

4.2. Protocol with Malicious Security

In the basic protocol, oblivious transfer is the inter-
action between the client and the server. While go-
ing through the protocol, it looks like we can obtain
fully secure protocol by replacing the semi honest
oblivious transfer protocol with secure against ma-
licious party. But that is not enough to prove the
security against the malicious client. Fully secure
oblivious transfer protocol can prevent malicious
behaviors like changing the input during protocol
execution but it is not sufficiently strong to prevent
the malicious client from full universe attack.

In a full universe attack, a malicious client en-
codes the full universe of all possible elements in
its Bloom filter and uses it in the PSI protocol to
learn the server’s entire set. A Bloom filter can eas-
ily represent the full universe by setting all the bits
to 1. This is a feature of Bloom filters and causes
a problem while constructing a simulator for the
client in the malicious model. Namely, when the ad-
versary uses the all-one Bloom filter, the simulator
needs to enumerate all elements in the universe and
send them to the trusted party in the ideal process.
Without making any assumptions, the universe is
potentially too large and a polynomial time algo-
rithm may fail to enumerate all elements.

To prevent the full universe attack, authors have
added a step to make sure that the client’s Bloom
filter is not all-one. The server uses a symmetric
key block cipher to encrypt strings in its garbled
Bloom filter before transferring them to the client
which forces the client to behave honestly by split-
ting the key into m shares using a (m/2, m)-secret
sharing scheme. The client uses the bit array in its
Bloom filter as the selection string to receive the in-
tersection garbled Bloom filter and the shares of the
key. If the bit in the selection string is 0, the client
receives a share of the key, if the bit is 1, the client
receives an encrypted string in GBFs. The intu-
ition is that if the client cheats by using an all-one
Bloom filter, it will not be able to gather enough
shares to recover the key, hence cannot decrypt the
encrypted GBF. In the protocol m = 2kn to make
sure that the client’s Bloom filter has at least m/2
0 bits to receive enough shares to recover the key.
Since the client has at most n elements and each
element needs to be hashed k times, then the num-
ber of 1 bits in BFC will never exceed kn = m/2,
consequently the number of 0 bits will always be at



least m/2.

The steps added for the security will not affect
the client’s privacy, but might affect the correct-
ness of the protocol when malicious server sends
wrong key shares or uses a different key to en-
crypt its GBF. The client cannot detect that be-
cause the key is random and the strings in the GBF
will look random. To prevent this malicious behav-
ior, the client is required to send m A-bit random
strings (rg,...,rm—1) to the server before oblivi-
ous transfer. For each GBFgli], the server encrypts
ri||GBFsli] (]| means concatenation) and sends the
ciphertext. After the transfer, the client can recover
the key and decrypt the received ciphertexts. When
the server is honest, the client can correctly decrypt
using the key it recovered and r; should present in
the decrypted message. For each garbled Bloom fil-
ter string the client received, the probability of the
server getting away with cheating is 27,

4.3. Complexity

They have discussed the computational, communi-
cation and memory complexity in their paper. To
build BFe or GBFg, each party needs k - n hash
operations. Then the server needs A public key op-
erations and the client need 2\ public key opera-
tions for the Naor-Pinkas OT [31], and both parties
need m = knlog, e = 1.44kn hash operations for
the oblivious transfer extension. The client needs
to keep a copy of the Bloom filter and a copy of
the intersection Garbled Bloom filter which in to-
tal need at most (A + 1)m bits. This can be op-
timized to (A/2 4+ 1)m bits because the client can
throw away the string received when BF¢[i] = 0
and leave GBF{¢[i] = NULL. The server needs
to store the garbled Bloom filter that is A - m bits.
The main data sent in the protocol is a bit matrix
required by the oblivious transfer extension and the
strings sent by the server. In total 2) - m bits. All
other communication costs are much less significant
and does not need to be considered.

5. Data Management

We discuss several data management methods that
can be applicable on the GBF in this section. Since
the DCW13 protocol improved the efficiency, it mo-
tivates us to study properties of garbled Bloom fil-
ter. Different mathematical properties can be ap-
plied on the garbled Bloom filter. We are discussing
addition of data in the GBF, removal of data from
GBF and merging the data from two GBF into a
single one. For the better performance of algorithm,
we have modified the server’s preparation of the
GBF from existing protocol. We have incorporated
counter array for each data slot which will be useful

to identify the number of shared states in that par-
ticular slot. This counter value has greater impact
while removing the data from the GBF and merg-
ing two GBF into a single one as it will let us know
the number of shares of data in each location.

5.1. GBF Preparation

For the preparation of a GBF as explained in Al-
gorithm 1 below, we first create an empty GBF
and initialize each location values to NULL. To add
r € S, we will split x into k shares and store the
shares in GBFg[hi(x)]. We have counter C' which
will be initiated by 0 and will be incremented for
each shares on the particular location. We also
know in this process, some location j = h;(z) may
have been occupied by a previously added element
already. For this scenario, we have to reuse the ex-
isting share stored at GBFgs[j]. After adding all
elements in S, we generate and store random A-bit
strings at all NULL locations.

Algorithm 1 Build GBF with Counter

Input: A set S,n,m,k,\,C,H = {ho,...hx_1}
Output: An (m,n,k, H,\,C)-Garbled Bloom filter
GBF's
1: fori=0tom—1do

2:  GBFgli)= NULL;

3: end for

4: for all x € S do

5. emptySlot = —1, finalShare =z
6: fori=0tok—1 do

7 Jj = hi(x)

8: Cli]=0

9: if GBFs[j] == NULL then
10: if emptySlot == —1 then
11: emptySlot = j

12: else

13: GBFs[j] «+ {0,1}*;

14: finalShare = finalShare & GBF s[j]
15: Cli)++

16: end if

17: else

18: finalShare = finalShare ® GBF s[j]
19: Cli]++
20: end if
21:  end for
22:  GBFglemptySlot] = finalShare
23: fori=0tom—1do
24: if GBFg[i] == NULL then
25: GBFsli] + {0,1}*
26: Cli]=0
27: end if
28:  end for
29: end for




5.2. Data Addition on GBF

Data addition algorithm 2 below helps the server to
add the data over the existing GBF. Basically, data
addition on the GBF process is somewhat similar to
the preparation of new GBF but the only difference
is, to add data over the already existing data filled
locations in the GBF. We have GBFg with data or
random value filled in each locations as input. We
will obtain exact same size of GBFg on output but
with more data added on it. To add « € S, first split
x into k shares and store the shares in GBFg[j]. We
have counter C' value from the input GBFg which
will be incremented for each shares on the particular
location. We also know location j = h;(x) has value
and we have to reuse the existing share stored at
GBFs[j]. After adding all elements in S to the
new GBFg, if there are any NULL locations, we
generate and store random A-bit strings to ensure
that none of the location in the GBF are blank for
the purpose of security.

Algorithm 2 Add Data on GBF

Input: An  (m,n,k, H,\,C)-garbled Bloom filter
GBFs

Output: An (m,n,k, H,\,C)-garbled Bloom filter
GBF's

1: for all x € S do

2 emptySlot = —1, finalShare = x

3 fori=0tok—1do

5: Cli]=0

6: if GBFs[j] == NULL then

7: if emptySlot == —1 then

8 emptySlot = j

9: else
10: GBFs[j] «+ {0,1}*

11: finalShare = finalShare & GBFsl[j]
12: Cli) ++

13: end if

14: else
15: finalShare = finalShare ® GBFs[j]
16: Cli]++
17: end if

18:  end for
19:  GBFslemptySlot] = finalShare
20: fori=0tom—1do

21: if GBFs[i] == NULL then
22: GBFsi] + {0,1}*

23: Clil=0

24: end if

25:  end for

26: end for

do. This index is allocated exclusively to the ele-
ment which has to be deleted. Then we can replace
the string at this index with a random string. The
idea is that we test set membership by XORing all
shares, this idea delete one share of the element
from the garbled Bloom filter, so set membership
query will always return false. It does not affect
other elements since this share is not used by other
elements.

Algorithm 3 Remove Data from GBF

5.3. Data Deletion from GBF

To delete an element from a garbled Bloom filter,
we can find one index in the garbled Bloom filter
that the element hashes to and no other elements

Input: An
GBFs

Output: An (m,n,k, H,\,C)-garbled Bloom filter
GBFs

1: for all z € S do

(m,n,k, H A\, C)-garbled Bloom filter

2: fori=0tok—1do
3: share =

4: ] = hl(l')

5: if C[j] ==1 then
6: share < {0,1}*
7 GBFs[j] = share
8: Clj]=0

9: end if
10: end for
11: end for

5.4. GBF Merging

To merge two different GBF's into a single one. We
can simply get the union of two different GBFs. We
have two input GBF's and single output GBF. For
each data we check whether every slot has data or
random value. If for any particular slot, both GBF
have data, we do XOR of them and allocate it to the
same index value in output GBF. If any of the slut
from input GBF have random value we check the
corresponding slot value of the another input GBF,
if it has data, it will be restored in the output GBF
else random value will be generated and stored.

5.5. Memory and Communication
Complexity

Even we have implemented data management tech-
niques with slight modifications over DCW13 Pro-
tocol, number of steps of execution doesn’t vary
much with their approach so that time and space
complexity value remains same with DCW13 pro-
tocol. So, we can write memory complexity as A-m
bits and communication complexity as 2\ - m bits .

6. Performance Evaluation

In this section we discuss the performance estima-
tion of results of our updated technique of GBF



Algorithm 4 Merge GBF
Input: Two (m,n,k, H,\,C) GBFs1, GBFs2
Output: An (m,n,k, H,\,C)-garbled Bloom filter
GBFs
1: fori=0to k—1do

2: if C1[i] 1 =0 && C2[i] ! =0 then

3: GBFsli| «+ GBFs1[i] ® GBFsa[i]
4: Ci] + C1[i] + C2]i]

5: else

6: if C1[i] == 0 && C2[i] ! = 0 then
7 GBFs[i] — GBFsz[i]

8: C[i] + C2[i]

9: else
10: if C1[7] ! = 0 && C2[i] == 0 then
11: GBFsM — GBFSl[i}
12: Cli] « C1[i];
13: else

14: GBFsli] + {0,1}*
15: Cli]=0

16: end if
17: end if

18: end if
19: end for

preparation and modification. We have not ex-
ecuted the PSI protocol but executed the source
code to create Garbled Bloom Filter from Dong et
al’s protocol and our updated version. We have
performed the experiment in Macbook Pro laptop
with an Intel core i51.4 GH, CPU, 4 GB RAM and
runs Mac OS X 10.7. We have chosen the GBF pa-
rameters k = A and set m to be the optimal value
knlogoe. So for, at 80-bit security & = A = 80,
and when n = 220, m = 120795960. While creat-
ing GBF using the Dong et. al?s protocol with the
server data set size S = 10000, total execution time
was 5.88 sec and with the execution of algorithm 1
explained above it took 7.02 sec. So, even imple-
menting counter while preparing GBF doesn’t alter
the performance of PSI protocol. As our paper is fo-
cused on the data management techniques over the
Dong et al’s protocol, security analysis will be same
with their protocol. For PSI protocol execution us-
ing our modified Garbled Bloom Filter, it might be
slightly alter the performance of the protocol.

7. Conclusion and Future Work

In this paper we have improved over efficient and
scalable PSI protocol based on oblivious Bloom in-
tersection by Dong et al. Their protocol depends
mostly on efficient symmetric key operations and
the operations can be parallelized easily. They
presented two variants of the protocol: the basic
one is secure in the semi-honest model and the en-
hanced one is secure in the malicious model. Com-
paring with other protocols performance evaluation
and comparison results show that their protocol is

magnitude faster than previous protocols. The effi-
ciency make it suitable for large scale privacy pre-
serving data processing. Based on their protocol,
we have presented data management methods in
Garbled Bloom Filter, which will enable us to per-
form the addition, the deletion of data among the
GBF and merging two GBFs into a single one. We
believe these data management methods presented
will enhance more in the execution of PSI.
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